Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 16(770): eabo4457, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719945

RESUMO

The degradation of macromolecules and organelles by the process of autophagy is critical for cellular homeostasis and is often compromised during aging and disease. Beclin1 and Beclin2 are implicated in autophagy induction, and these homologs share a high degree of amino acid sequence similarity but have divergent N-terminal regions. Here, we investigated the functions of the Beclin homologs in regulating autophagy and mitophagy, a specialized form of autophagy that targets mitochondria. Both Beclin homologs contributed to autophagosome formation, but a mechanism of autophagosome formation independent of either Beclin homolog occurred in response to starvation or mitochondrial damage. Mitophagy was compromised only in Beclin1-deficient HeLa cells and mouse embryonic fibroblasts because of defective autophagosomal engulfment of mitochondria, and the function of Beclin1 in mitophagy required the phosphorylation of the conserved Ser15 residue by the kinase Ulk1. Mitochondria-ER-associated membranes (MAMs) are important sites of autophagosome formation during mitophagy, and Beclin1, but not Beclin2 or a Beclin1 mutant that could not be phosphorylated at Ser15, localized to MAMs during mitophagy. Our findings establish a regulatory role for Beclin1 in selective mitophagy by initiating autophagosome formation adjacent to mitochondria, a function facilitated by Ulk1-mediated phosphorylation of Ser15 in its distinct N-terminal region.


Assuntos
Autofagossomos , Mitofagia , Animais , Humanos , Camundongos , Autofagossomos/metabolismo , Autofagia , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Fibroblastos/metabolismo , Células HeLa
2.
Aging Cell ; 19(8): e13187, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627317

RESUMO

Advancing age is a major risk factor for developing heart disease, and the biological processes contributing to aging are currently under intense investigation. Autophagy is an important cellular quality control mechanism that is reduced in tissues with age but the molecular mechanisms underlying the age-associated defects in autophagy remain poorly characterized. Here, we have investigated how the autophagic process is altered in aged mouse hearts. We report that autophagic activity is reduced in aged hearts due to a reduction in autophagosome formation. Gene expression profile analysis to evaluate changes in autophagy regulators uncovered a reduction in Atg9b transcript and protein levels. Atg9 proteins are critical in delivering membrane to the growing autophagosome, and siRNA knockdown of Atg9b in cells confirmed a reduction in autophagosome formation. Autophagy is also the main pathway involved in eliminating dysfunctional mitochondria via a process known as mitophagy. The E3 ubiquitin ligase Parkin plays a key role in labeling mitochondria for mitophagy. We also found increased levels of Parkin-positive mitochondria in the aged hearts, an indication that they have been labeled for mitophagy. In contrast, Nrf1, a major transcriptional regulator of mitochondrial biogenesis, was significantly reduced in aged hearts. Additionally, our data showed reduced Drp1-mediated mitochondrial fission and formation of enlarged mitochondria in the aged heart. Overall, our findings suggest that cardiac aging is associated with reduced autophagosome number, decreased mitochondrial turnover, and formation of megamitochondria.


Assuntos
Envelhecimento/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Coração/fisiologia , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/fisiologia , Animais , Autofagossomos/metabolismo , Autofagossomos/fisiologia , Autofagia/fisiologia , Células HeLa , Humanos , Masculino , Camundongos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo
3.
Sci Rep ; 10(1): 8499, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444656

RESUMO

Parkin is an E3 ubiquitin ligase well-known for facilitating clearance of damaged mitochondria by ubiquitinating proteins on the outer mitochondrial membrane. However, knowledge of Parkin's functions beyond mitophagy is still limited. Here, we demonstrate that Parkin has functions in the nucleus and that Parkinson's disease-associated Parkin mutants, ParkinR42P and ParkinG430D, are selectively excluded from the nucleus. Further, Parkin translocates to the nucleus in response to hypoxia which correlates with increased ubiquitination of nuclear proteins. The serine-threonine kinase PINK1 is responsible for recruiting Parkin to mitochondria, but translocation of Parkin to the nucleus occurs independently of PINK1. Transcriptomic analyses of HeLa cells overexpressing wild type or a nuclear-targeted Parkin revealed that during hypoxia, Parkin contributes to both increased and decreased transcription of genes involved in regulating multiple metabolic pathways. Furthermore, a proteomics screen comparing ubiquitinated proteins in hearts from Parkin-/- and Parkin transgenic mice identified the transcription factor estrogen-related receptor α (ERRα) as a potential Parkin target. Co-immunoprecipitation confirmed that nuclear-targeted Parkin interacts with and ubiquitinates ERRα. Further analysis uncovered that nuclear Parkin increases the transcriptional activity of ERRα. Overall, our study supports diverse roles for Parkin and demonstrates that nuclear Parkin regulates transcription of genes involved in multiple metabolic pathways.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Hipóxia/fisiopatologia , Mitofagia , Infarto do Miocárdio/patologia , Receptores de Estrogênio/genética , Ubiquitina-Proteína Ligases/fisiologia , Animais , Núcleo Celular/genética , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Receptores de Estrogênio/metabolismo , Transcriptoma , Ubiquitinação , Receptor ERRalfa Relacionado ao Estrogênio
4.
J Muscle Res Cell Motil ; 41(4): 355-362, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31313217

RESUMO

Adult stem cells are undifferentiated cells that are found in many different tissues after development. They are responsible for regenerating and repairing tissues after injury, as well as replacing cells when needed. Adult stem cells maintain a delicate balance between self-renewal to prevent depletion of the stem cell pool and differentiation to continually replenish downstream lineages. The important role of mitochondria in generating energy, calcium storage and regulating cell death is well established. However, new research has linked mitochondria to stem cell maintenance and fate. In addition, efficient mitochondrial quality control is critical for stem cell homeostasis to ensure their long-term survival in tissues. In this review, we discuss the latest evidence linking mitochondrial function, remodeling and turnover via autophagy to regulation of adult stem cell self-renewal and differentiation.


Assuntos
Autofagia/fisiologia , Análise Mutacional de DNA/métodos , Mitocôndrias/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Camundongos
5.
Autophagy ; 15(7): 1182-1198, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30741592

RESUMO

Cell-based therapies represent a very promising strategy to repair and regenerate the injured heart to prevent progression to heart failure. To date, these therapies have had limited success due to a lack of survival and retention of the infused cells. Therefore, it is important to increase our understanding of the biology of these cells and utilize this information to enhance their survival and function in the injured heart. Mitochondria are critical for progenitor cell function and survival. Here, we demonstrate the importance of mitochondrial autophagy, or mitophagy, in the differentiation process in adult cardiac progenitor cells (CPCs). We found that mitophagy was rapidly induced upon initiation of differentiation in CPCs. We also found that mitophagy was mediated by mitophagy receptors, rather than the PINK1-PRKN/PARKIN pathway. Mitophagy mediated by BNIP3L/NIX and FUNDC1 was not involved in regulating progenitor cell fate determination, mitochondrial biogenesis, or reprogramming. Instead, mitophagy facilitated the CPCs to undergo proper mitochondrial network reorganization during differentiation. Abrogating BNIP3L- and FUNDC1-mediated mitophagy during differentiation led to sustained mitochondrial fission and formation of donut-shaped impaired mitochondria. It also resulted in increased susceptibility to cell death and failure to survive the infarcted heart. Finally, aging is associated with accumulation of mitochondrial DNA (mtDNA) damage in cells and we found that acquiring mtDNA mutations selectively disrupted the differentiation-activated mitophagy program in CPCs. These findings demonstrate the importance of BNIP3L- and FUNDC1-mediated mitophagy as a critical regulator of mitochondrial network formation during differentiation, as well as the consequences of accumulating mtDNA mutations. Abbreviations: Baf: bafilomycin A1; BCL2L13: BCL2 like 13; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; CPCs: cardiac progenitor cells; DM: differentiation media; DNM1L: dynamin 1 like; EPCs: endothelial progenitor cells; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; FUNDC1: FUN14 domain containing 1; HSCs: hematopoietic stem cells; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MFN1/2: mitofusin 1/2; MSCs: mesenchymal stem cells; mtDNA: mitochondrial DNA; OXPHOS: oxidative phosphorylation; PPARGC1A: PPARG coactivator 1 alpha; PHB2: prohibitin 2; POLG: DNA polymerase gamma, catalytic subunit; SQSTM1: sequestosome 1; TEM: transmission electron microscopy; TMRM: tetramethylrhodamine methyl ester.


Assuntos
Autofagossomos/metabolismo , Diferenciação Celular , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Mioblastos Cardíacos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , DNA Polimerase gama/genética , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Mioblastos Cardíacos/efeitos dos fármacos , Infarto do Miocárdio , Biogênese de Organelas , Proibitinas
6.
Curr Opin Physiol ; 1: 21-26, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29484309

RESUMO

Autophagy is a well-known intracellular degradation process involved in clearing damaged or unnecessary components in cells. Functional autophagy is important for cardiac homeostasis. Given this, it is not surprising that dysregulation of autophagy has been implicated in the aging process and in various cardiovascular diseases. Therefore, understanding the functional role of autophagy in the heart under various conditions and whether manipulation of the pathway has therapeutic benefits have been a major focus of many investigations in recent years. Although consensus exists that autophagy is a critical cellular quality control pathway in the heart, its role in disease remains controversial. Whether altered autophagy is protective or detrimental in the heart seems to depend on the context and the disease. Here, we review the latest insights into autophagy in cardiovascular homeostasis and disease and its role in disease development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...